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The author employs the methods oftensor calculus to investigate the existence of linear
integrals, and uses an example to show that a system can have a force function without
possessing a linear integral [1],

1, Let the kinetic energy of a holonomic system be given by
T =gy, d"

and the generalized forces by @, . Here and in the following the Greek indices assume the

values of 1, 2, 3, ..., n, and a dot (" ) denotes a derivative with respect to time z.
Equations of motion of the system in the contravariant nota-
tion have the form . .
y ¢° - Th0" e =0 (1.1
Miz,y) q P
SRS B [ L o — 70
. A T2 g ) ﬁqp. + ()ql aqv ’ v
¢ We can also write them as
0 N 8q° /dt = Q° (1.2)
Fig, 1 Let us consider the following simple example. Suppose the

point M moves under the action of a central force. We shall
choose the radius vector ¢! = r and the polar angle ¢* == ¢ as the variables. Assuming
that m = 1, we have

2T =¥ + rig¥, Q= Fy, 0, =0
Let us now determine T,° . We find that (Fig. 1)
- 2 2 —
I, = —r Tf,=1/r T3, =17, =0

Assume now that the system has a linear first integral
r0" = C, C = const

Differentiating it we obtain
Oh @ 4 A, Bgx =0
This and (1. 2) yield
SA Jdt ¢* 4 A,Q%=0
which together with the relation .
6;\«x/dt — Vp;\,xqp
after necessary transformations gives
Vpqup q* -+ A,XQX =0
From the latter relation we obtain
Vhy 4 Vyhy==0 (1.3)
Ay @*=0 1.5
Consequently condition (1. 4) is both, necessary and sufficient for ,¢* = C to be the
first integral of the system, The first condition means that V 3  is a skew symmetric
tensor and the second one, that 4 and @, are mutually perpendicular. In addition, the
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first condition is independent of @, and depends only on the form of 2T.

In finding the linear integrals we encounter the following two problems, Firstly, we
must find all covariant vectors whose covariant derivatives are skew symmetric; seondly,
out of these vectors we must separate those perpendicular to the vector of generalized
forces Q,.-

Let us return to our original example and take the vector A; =0, A, = r2. Direct com-

putation yields Vil =0, Vahg=0, Vida=r, Vahi==—r

From this it follows that the first condition of (1. 4) is satisfied. The second condition
of (1.4) together with the relations A; = 0, A, = r%, Q' = Fy/r? and @* = 0 now yields

lex = Fo/r?.04-r2.0=0

Using the conditions (1,4) we can now conclude that r¢'= C is a linear integral,

since g is an ignorable coordinate,the above integral can be obtained from Lagrange’s
equations, We can also adopt a different approach using the rectangular coordinates
¢' = z and ¢* = y of the point M as parameters, The system will then have an ignorable
coordinate, though possessing a linear integral

yz' —zy' = C

We return to conditions (1. 4) to investigate the existence of linear integrals in the case
when the system has ‘no ignorable coordinate, Let us set A, = e, From(1.4) follows

8 = — B4, 1.€, the tensor e, is skew symmetric. Performing absolute differentiation

we obtain
Vp.vv;"p = Vp.evp (1.5)
Then we have

Vol — Y Voh, =V, =R, Eh,

On the other hand
VVA, —V VA, =Ve, =R} A,
Differentiating once again we obtain
Ve = VRp,." }"P- + R,," Vi,
V.Ve,=V, R, A, +R

e’ v'ev o tvpv

vap' Vpa’p.
Adding the left-and right-hand sides respectively, we find
R,Y euot Rt e, =V R, ¥ M+ V,R,} AR Ve, +R, Ve,

and finally

™

(VuRo" + VpRvpvP‘) A’u =2 (Rvpvl‘ Eyp t+ Rvppp' Ep) 1.9

The number of these equations coincides with the number of the real components of
the bivector €up. Since the system is linear in 8,00 We can obtain &, as a linear com-
bination from A, — ¢,

Inserting the expressions obtained into the first condition of (1, 4) we arrive at

. v
V=0, a.n

_ x
= (D“_p Ax.

Thus the question of solvability of our problem reduces to the process of solving a sys-
tem of partial differential equations, Let us construct the condition of integrability
VPV\‘AK - Vvvp.x’x == Rp.-/xp l‘p = mvxp (‘)p.: A’n - mp.up mvpnln'!' (Vp.(’)vxp - vap.xp) A":
The relations obtained must be fulfilled in order for the linear integral to exist and
form together with the second equation of (1.4), the conditions of existence of a solution
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of the given type.
Let us see how the conditions (1, 4) change when the system has an ignorable coordinate
g". In this case A, = &y, SO that 3 og
gxp. Yo
Vit Vb = Vol + Vg, = 5.0 — T o, o I3y &op,
where the differentiation over the index pg is not performed. By the theorem of Ricci we
have g

Xy
aq*

in this case condition (1, 3) becomes

—F:v gppq :r‘v,p.o guo’ x ' xv gpp.o ZI‘:p.o g\m
9q
U8y

Vv"‘x + Vxlv = rvfx.- gxﬂ + Fip-o g“p = r*. Vikg + rVy Py = (3(]“’“ =

and from this aT _1_ 98y X% Q)
0qlrlr~ - 2 aql"v o

The second condition of (1.4) can be written as
b Q¥ =8,,Q =0, =0

Finally we find that 87 /dgw =0 and Q[-ln = 0 must hold, if¢¥js an ignorable coordinate.
These conditions are well known in analytical mechanics. The problem of existence of
"latent” linear integrals can also be tackled in a different manner. Second equation of

7a 4 (1.4) upon absolute differentiation yields

V AQ + 4,V Q" =0, V,A,Q°+ AV, Q=0

Multiplying the first equation by ¢° and the second one

by @* and adding, we obtain
(Vb + V 4,0 Q¥Q° + 1, Q°V Q" + 1,077, Q° =
= 22,Q°V Qx =0 (1.8)

We have thus obtained a different equation in A,. These
arguments are applicable if at least one of the coefficients
of Q, 5 0. The process leading to Eq. (1. 8) can be applied
to the equation itself repeatedly ad infinitum, If tne result-
ing linear equations are incompatible, the system has no
solution, Ctherwise these equations serve only to restrict
the range of variation of A, .

To illustrate the methods discussed we shall consider an example. A double mathe-
matical pendulum consists of two heavy rods 04 and 4B, hinged cylindrically at the
point 4 and suspended at the point 0. We assume that | 04 | = | AB | = 2r and they
are of equal mass m(Fig.2).

Expressions for the kinetic energy, principal moments of inertia and the potential energy
are, respectively,

Fig. 2

27 = Ag? + BO2 -} 2C cos (0 — 9)0¢”

4 = iﬁ-mrﬂ, B = é_‘mrz, C = 2mr®, U = 3mgrcos ¢ + mgr cos
Setting ¢! = @ and ¢* = ¢ we obtain the following expressions for I‘!‘j
C? sin (8 — @) cos (6 — @)
AB — Ctcos® (6 — @);
— BCsin (6 — @)
I'n?= PP
AB — C*¢os? (0 — @)

Tul=— I‘222 ==

ot ACsin (0 —9)
B="AB " C?cos* (6 —9) '
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The remaining T% =0.
Let us find the components of the metric tensor RJg,. As we know from [2]

arY; BPB: B ]
Beow =58 ~ oy T Tyl s~ Tya Ty
— BCcos (0 — @) Bt == ACcos (0 — @)
Rw*= g "Cicos* (0 — @) ® 32 == TAB —m C? 082 (0 — @)
C*sin? (0 — @) — C* ABcos® (8 — @)
Run! = Ro* = (AB—C?cos (0 — 9))?

Expression (1, 6) now becomes
(ViRud + VaRind] Ay = 2 [Run'ey + Rim'ey] = 2 [Rinl + Rig?] e1a =0
Keeping in mind that Ria! = — Ra? we find
g [ViRy o, + VaR, 1145 = 0
which can be transformed to yield finally

gjk ViR, ok + VeRio ] = gle1Rzm+ gj2V Bin,

so that
g5V  Rish; =0 (1.9)

Relations (1, 4) and (1, 9) represent a system of linear equations in A;. The condition
of existance of solutions has the form

Q, = pV R (1.10)
Further
oR
ViR = aql;m — I'ntRiziz — T'u'Rig1e
oR
VaRig12 = —aql% — T59?R1012 — Iax? Rimg
Using
e = —TI'nl, Rigip = ngmp =f(0—¢)
O0R1a12 OR1a1
99 =f'(9—CP), aq:’ =—f’(9—(P)
we find

ViRigz = — VaRians (.14)

Condition (1. 9) in the expanded form becomes
81V1R115M + g¥iViR1z12he + g2VeR1a19h + 822V R1212he = 0
Let us assume that VgRige =0, then
Vel = g2stRmp =0, VeRin = glpV‘szp =0
Since the determinant of this system is different from zero, we have
VaRig! = VaRin? =0

But
dRn?
VeRin? = —5g 70

The contradiction obtained shows that
VaRig12 50
Simplifying we obtain
=g+ (—g?+ ") k=0
from which we have '

M= % (B+ Ccos (8 — 9)), o= % (A+Ccos (6 —o)) (1.12)
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Here .
&n = B, gy = A, g1, = gy = Ccos (6 — )

g =gm/A gP=¢g"=—g,/A g®=g,/A A=AB— Clos (0 — ¢)

Direct computation shows that the vector

M=B+ Ccos(8 —@), o, =4 + Ccos (8§ — ) (1.13)
satisfies the condition (1,4), namely
Vi = Vahe =0, Vikz 4 Vohi = 0
Since all solutions of the system are given in the form (1.12), any other solution must
be collinear with (1,13) so that i = vh.
We shall now show that v = const. Indeed
Vipr = Vivhi 4+ vVihi = Vivli =0
Vofte = Vavds 4+ v'Vohy = VavAg = 0 (1.14)

Vipe 4 Vopa = Vaivig 4+ vVike + Vavhi 4 vVWoki = Vivhs + Vavh1 =0

The following cases are possible :
1) let A, 5= 0, A, == 0; then

Viv=0v /80 =0, Vyv=20v/dp=0
consequently v = const.
2) let A, = 0, A, &= 0 or vice versa; then

Vav =0, Vivhy =0

i.e, A;v = 0, which brings us back to the case (1),
3) the case A, = A, = 0 is of no interest,
We have thus shown that v = const.
Other solutions of Eq.(1 3) exist appart from (1,13), but they can all be obtained by
multiplying the latter solution by an arbitrary constant.
To investigate the existence of a linear integral we shall turn to condition (1.10)

Q1= pViRu, Q2 = pVoRiza = — pVi1Rione
Therefore ¢; = — Q, must hold, Keeping in mind the expression fot the kinetic energy
we obtain U
le-%- = — mgrsin@, Qz=ﬁ,§‘=—-3m€" sing, Qi#Q:

Thus the system has no linear integral, although it has a force function,
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